Instituto de Biotecnologia UNAM

Dr. Federico Sanchez Rodriguez

En nuestro grupo estudiamos los mecanismos de señalización durante la organogénesis de los nódulos fijadores de nitrógeno en las raíces de leguminosas. La nodulación es un modelo fascinante de diferenciación celular y del desarrollo en plantas y de la interacción de las leguminosas con microorganismos simbiontes. Asimismo, pensamos que el citoesqueleto es una ventana valiosa para estudiar este proceso porque está involucrado en diversas funciones celulares tales como división y expansión celular, la endocitósis y la comunicación célula-célula. Además, el citoesqueleto sufre rearreglos muy importantes tanto en las células animales como vegetales cuando interaccionan con microorganismos o con algunos de sus metabolitos (factores Nod, elicitores y patrones moleculares asociados a patógenos (PAMPs). La plasticidad y dinamismo del citoesqueleto de actina está mediada en gran parte por la acción y expresión diferencial de diferentes isoformas de actina y de sus proteínas asociadas. Estas proteínas controlan la organización espacial y temporal de los microfilamentos, el tráfico vesicular, el crecimiento polar y el movimiento de organelos, entre muchas otras funciones. Por esta razón, hemos clonado el gen que codifica una proteína de interacciona con actina, la profilina de Phaseolus vulgaris. Además, la profilina también interactúa con fosfoinosítidos (PIP2) y con muchas otras proteínas con dominios ricos en prolinas. Hemos reportado que la profilina en fríjol (la raíz y el nódulo) se encuentra fosforilada en varios residuos de tirosina. En eucariotes, dichas modificaciones están generalmente involucradas en las rutas de transducción de señales. Publicamos hace un tiempo que la fosforilación de la profilina en residuos de tirosina impide, tanto in vivo como in vitro, la interacción con la fosfatidil inositol 3-cinasa (PI3K), una enzima clave en la transducción de señales.

Recientemente, reportamos una técnica novedosa para inducir raíces transgénicas en frijol con Agrobacterium rhizogenes. Estas raíces transformadas son susceptibles de formar nódulos transgénicos al inocularlas con Rhizobium etli. Por tal razón, hemos obtenido por mutagénesis dirigida las mutantes sencillas y dobles de profilina en las posiciones Y6F, Y6D, Y72F, Y72D, Y125F, Y125D, que fenocopian los estados fosforilados y desfosforilados de los residuos que hemos mapeado que participan en la interacción con PI3K y posiblemente con otros ligandos. En fríjol, sólo se expresa un gen de profilina en tejidos vegetativos. Mediante RNAi vamos a silenciar este gen y sustituirlo por las diferentes mutantes para determinar el papel funcional de estas modificaciones y por proteómica, sus ligandos. Con anterioridad habíamos reportado que la actina en Phaseolus vulgaris está monoubiquitinada y que esta modificación covalente no es exclusiva de la simbiosis ya que se induce por la interacción de otras bacterias y hongos tanto patógenos como simbiontes o PAMPs, como son los fragmentos de pared de levadura. Adicionalmente, encontramos que el peróxido de hidrógeno induce esta modificación, una señal temprana que se produce poco después del reconocimiento a los microorganismos o sus metabolitos tanto en animales, insectos y también en plantas por lo que propusimos que la monoubiquitinación de actina forma parte de la vía de señalización de lo que se conoce como la respuesta inmune innata. Utilizando el dominio de unión a filamentos de actina de la fimbrina fusionada a la proteína verde fluorescente (ABD-GFP) y una forma de ubiquitina con etiqueta (6XMyc o FLAG) vamos a estudiar la vía de señalización y su papel funcional en lo que se conoce como la inmunidad innata generalizada (nonhost resistance) en raíces transgénicas de fríjol. Respecto a la inmunidad innata, recientemente hemos clonado varios genes que codifican proteínas que participan tanto en inducir la defensa como en controlar la muerte celular programada (muerte por autofagia). En particular, una aspartil proteasa específica de nódulos de fríjol (nodulina). También hemos avanzado en su caracterización bioquímica e inmunolocalización por microscopía confocal en cortes de nódulos. El ortólogo de este gen en Arabidopsis es una proteasa extracelular (CDR1) que cuando se sobre-expresa, induce tolerancia a infecciones de microorganismos patógenos (Pseudomonas syringae). Estamos analizando los fenotipos de las raíces y nódulos transgénicas en donde se ha silenciado por RNAi, así como también donde se sobre-expresa este gen. Nuestra hipótesis de trabajo es que esta proteasa tiene un blanco muy específico que podría generar un péptido que se transporta en forma endócrina y que induce a genes de defensa en frijol. Estamos analizando por genómica funcional dos genes que codifican proteínas de choque térmico. Hsp70 (BIP) que tiene un papel crucial en la respuesta de proteínas no plegadas (UPR)cuya expresión está incrementada en los nódulos. Además, una proteína pequeña de choque térmico (sHSP) (Nod22).

En Arabidopsis hay dos genes ortólogos, tenemos las mutantes nulas y estamos haciendo la cruza para tener la doble mutante. Nos interesa determinar la posible función de estos genes porque cuando sobre-expresamos la proteína recombinante de fríjol en E. coli, ésta le confiere tolerancia al choque oxidativo.

Recientemente, hemos enfocado nuestra atención en determinar la función de la PI3K durante la formación del hilo de infección de Rhizobium etli y de las células infectadas. La PI3K tiene un papel crucial en dispar la autofagia cuando hay limitación de nutrientes y durante la defensa en lo que se conoce como respuesta hipersensible, es decir una suicidio súbito para constreñir la infección por patógenos. Asimismo,estudiamos a una familia génica (Npv30 o Nodulina 30) de cuatro miembros que codifica proteínas altamente conservadas entre sí con una vida media muy corta. Estas proteínas tienen una caja de destrucción (D-Box)en el extremo amino terminal,un dedo de Zinc en la región central y una región PEST en el carboxilo terminalque manda la proteína al proteasoma. Aparentemente, la función de estas proteínas es frenar o detener la muerte celular de las células del nódulo ya que la pérdida de función lleva a la muerte celular de las células infectadas por Rhizobium. El transcrito de uno de los miembros es inducido por estrés oxidativo y aparentemente todos son reprimidos por nitrato. Mediante un sistema de "dos hibridos en levadura" hemos encontrado que forma heterodímeros consigo misma y con factores transcripcionales que en Arabidopsis inducen la muerte celular controlada de varios tejidos donde se pierde selectivamente el núcleo. Finalmente,estudiamos microRNAs durante la infección por Agrobacterium y el desarrollo (auxinas) de frijol y sus posibles blancos por un análisis informático y por genómica funcional. Asimismo, mediante un análisis genómico cuantitativo(transcriptoma)analizamos la expresión genética durante la simbiosis frijol-Rhizobiummediante la secuenciación profunda (IBT-Solexa)y microarreglos de microRNAs y de genes que se inducen durante la ontogenia del nódulo y la muerte celular cuando hay pérdida de función de la Nodulina 30 (NPv30).





UNAM | UNAM Morelos | Mapa del Sitio | Biblioteca Virtual de Biotecnología | Acerca de | Servicios | e-mail | Publicaciones
Docencia | Seminarios | Nuestra Gente | Biblioteca | Libros y documentos en línea | Localización | Informes Institucionales | Estancias para estudiantes de Licenciatura
Uso interno. | Página Principal
116 : 3698