Instituto de Biotecnologia UNAM

IBT-UNAM : Dra. Isabel Gomez Gomez

Dra.

Dra. Isabel Gomez Gomez


Investigador

Tutor de Maestría y Doctorado

Nivel I del SNI

Grupo del Dr. Mario Soberón

email: isabelg@ibt.unam.mx

Teléfonos

Oficina +52 (777) 311-4900 ext 227

Laboratorio +52 (777) 329-1624
desde la CDMX 562-27624

red UNAM 27624
+52 (777) 311-4900 ext 227



Distinción Universidad Nacional para Jóvenes Académicos (DUNJA) UNAM (2012)
Premio Weizmann Academia Mexicana de Ciencias (2003)


Estudiantes

M.C. Arlen Idalia Peña

Biol. Francisco Javier Portugal

Lic. Daniela Carmona

Publicaciones recientes

Sena de Silva,I. Gomez,I. Sanchez,J. Martinez de Castro,D.L. Valicente,F.H. Soberon,M. Polanczyk,R.A. Bravo,A. 2018. Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin PLoS ONE, 13, e0207789.

Pena-Cardena,A. Grande,R. Sanchez,J. Tabashnik,B.E. Bravo,A. Soberon,M. Gomez,I. 2018. The C-terminal protoxin domain of Bacillus thuringiensis Cry1Ab toxin has a functional role in binding to GPI-anchored receptors in the insect midgut Journal of Biological Chemistry, Nov 1 [Epub ahead of print], .

Gomez,I. Ocelotl,J. Sanchez,J. Lima,C. Martins,E. Rosales-Juarez,A. Aguilar-Medel,S. Abad,A. Dong,H. Monnerat,R. Pena,G. Zhang,J. Nelson,M. Wu,G. Bravo,A. Soberon,M. 2018. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa toxicity to Spodoptera frugiperda by domain III mutations indicates two limiting steps in toxicity as defined by receptor binding and protein stability Applied and Environmental Microbiology, 84, e01393-18.

Gomez,I. Rodriguez-Chamorro,D.E. Flores-Ramirez,G. Grande,R. Zuniga,F. Portugal,F.J. Sanchez,J. Pacheco,S. Bravo,A. Soberon,M. 2018. Spodoptera frugiperda (J. E. Smith) aminopeptidase N1 is functional receptor of Bacillus thuringiensis Cry1Ca toxin Applied and Environmental Microbiology, 84, UNSP e01089-18.

Pacheco,S. Gomez,I. Sanchez,J. Garcia-Gomez,B.I. Czajkowsky,D.M. Zhang,J. Soberon,M. Bravo,A. 2018. Helix alpha-3 inter-molecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-Cry toxin family Scientific Reports, 8, 10331.

Wang,Z. Fang,L. Zhou,Z. Pacheco,S. Gomez,I. Song,F. Soberon,M. Zhang,J. Bravo,A. 2018. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis) Journal of Biological Chemistry, 293, 11447.

Torres-Quintero,M.C. Gomez,I. Pacheco,S. Sanchez,J. Flores,H. Osuna,J. Mendoza,G. Soberon,M. Bravo,A. 2018. Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity Scientific Reports, 8, 4989.

Soberon,M. Portugal,L. Garcia-Gomez,B.I. Sanchez,J. Onofre,J. Gomez,I. Pacheco,S. Bravo,A. 2018. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis Insect Biochemistry and Molecular Biology, 93, 66-78.

Martinez de Castro,D.L. Garcia-Gomez,B.I. Gomez,I. Bravo,A. Soberon,M. 2017. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda Peptides, 98, 99-105.

Pacheco,S. Gomez,I. Sanchez,J. Garcia-Gomez,B.I. Soberon,M. Bravo,A. 2017. Intra-molecular salt bridge in Bacillus thuringiensis Cry4Ba toxin is involved in the stability of helix alpha-3 that is needed for oligomerization and insecticidal activity Applied and Environmental Microbiology, 83, e01515-e01517.

Ocelotl,J. Sanchez,J. Gomez,I. Tabashnik,B.E. Bravo,A. Soberon,M. 2017. ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth Scientific Reports, 7, 2386.

Onofre,J. Gaytan,M.O. Pena-Cardena,A. Garcia-Gomez,B.I. Pacheco,S. Gomez,I. Bravo,A. Soberon,M. 2017. Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta Peptides, 98, 93-98.

Serratos,I.N. Castellanos,P. Pastor,N. Millan-Pacheco,C. Colin-Gonzalez,A.L. Rembao,D. Perez-Montfort,R. Cabrera,N. Sanchez-Garcia,A. Gomez,I. Rangel-Lopez,E. Santamaria,A. 2016. Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum Chemico-Biological Interactions, 249, 10-18.

Ocelotl,J. Sanchez,J. Arroyo,R. Garcia-Gomez,B.I. Gomez,I. Unnithan,G.C. Tabashnik,B.E. Bravo,A. Soberon,M. 2015. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm PLoS ONE, 10, e0144086.

Zuniga-Navarrete,F. Gomez,I. Pena,G. Amaro,I. Ortiz,E. Becerril,B. Ibarra,J.E. Bravo,A. Soberon,M. 2015. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12 Insect Biochemistry and Molecular Biology, 59, 50-57.

Gomez,I. Flores,B. Bravo,A. Soberon,M. 2015. Bacillus thuringiensis Cry1AbMod toxin counters tolerance associated with low cadherin expression but not that associated with low alkaline phosphatase expression in Manduca sexta Peptides, 68, 130-133.

Gomez,I. Sanchez,J. Munoz-Garay,C. Matus,V. Gill,S.S. Soberon,M. Bravo,A. 2014. Bacillus thuringiensis Cry1A toxins are versatile-proteins with multiple modes of action: two distinct pre-pores are involved in toxicity Biochemical Journal, 459, 383-396.

Libros y capítulos recientes

Bravo,A. Pacheco,S. Gomez,I. Garcia-Gomez,B. Onofre,J. Soberon,M. 2017. Insecticidal Proteins from Bacillus thuringiensis and Their Mechanism of Action en: Crickmore,N. Bacillus thuringiensis and Lysinibacillus sphaericus: Characterization and use in the field of biocontrol. Cham. Springer International Publishing. pags. 53-66

Grande-Cano,R.A. Gomez I. 2015. Identification and characterization of receptors for insecticidal toxins from Bacillus thuringiensis en: Varma,A. Biocontrol of Lepidopteran Pests: Use of Soil Microbes and their Metabolites. Springer. pags. 71-88

Bravo,A. Martinez-de-Castro,D.L. Sanchez-Quintana,J. Canton,P.E. Mendoza,G. Gomez,I. Pacheco,S. Garcia-Gomez,B.I. Onofre,J. Ocelotl,J. Soberon,M. 2015. Mechanism of action of Bacillus thuringiensis insecticidal toxins and their use in the control of insect pests en: Alouf,J.E. Comprehensive Sourcebook of Bacterial Protein Toxins 4a ed. Elsevier. pags. 858-873

Bravo,A. Gomez,I. Mendoza,G. Gaytan,M. Soberon,M. 2015. Different models of the mode of action of Bt 3d-Cry toxins en: *bravo Bt resistance – characterization and strategies for GM crops expressing Bacillus thuringiensis toxins. Oxford. CABI. pags. 56-68

Soberon,M. Gomez,I. Garcia-Gomez,B.I. Carmona,D. Ocelotl,J. Villanueva,F. Flores,B. Bravo,A. 2014. Mode of action of mosquitocidal toxins from Bacillus thuringiensis and their use in control of insect vectors of human diseases en: Biotechnology: beyond borders. CSIR National Chemical Laboratory. pags. 279-288


Divulgación

Ibarra,J.E. Castro,M.C. Galindo,E. Patino,M. Serrano,L. Garcia,R. Carrillo,J.A. Pereyra-Alferez,B. Alcazar-Pizana,A. Luna-Olvera,H. Galan-Wong,L. Pardo,L. Munoz-Garay,C. Gomez,I. Soberon,M. Bravo,A. 2006. [Microorganisms in the biological control of insects and phytopathogens] Revista Latinoamericana de Microbiologia, 48, 113-120.

Miranda,R. Gomez,I. Soberon,M. Bravo,A. 2002. Mecanismo de accion de las toxinas Cry de Bacillus Thuringiensis.TIP revista especializada en Ciencias Quimico-Biologicas, 5, 5-13.



UNAM | UNAM Morelos | Mapa del Sitio | Biblioteca Virtual de Biotecnología | Acerca de | Servicios | e-mail | Publicaciones
Docencia | Seminarios | Nuestra Gente | Biblioteca | Libros y documentos en línea | Localización | Informes Institucionales | Estancias para estudiantes de Licenciatura
SiBioTec | Uso interno. | Página Principal
3364 : 18953