Instituto de Biotecnologia UNAM

IBT-UNAM : Dra. Maria Alejandra Bravo de la Parra


Dra. Maria Alejandra Bravo de la Parra

Líder Académico »» Grupo


Tutor de Maestría y Doctorado

Nivel III del SNI

Departamento de Microbiología Molecular

Líneas de investigación


- Licenciatura: Investigacion Biomedica Basica, Instituto de Investigaciones Biomedicas-UNAM (1985)
- Maestría: Investigacion Biomedica Basica, CIFN-UNAM (1986)
- Doctorado: Investigacion Biomedica Basica, CIFN-UNAM (1989)
- Mencion honorífica en examen profesional (1985)
- Mencion honorífica en examen de Doctorado
- Medalla "Gabino Barreda", Licenciatura (1985)
- Medalla "Gabino Barreda", Doctorado (1989)
- Estancia de Investigación: Companía Biotecnologica "Plant Genetic Systems", Gante, Belgica (1990-1991)

Reconocimiento Griswold Lecturer Universidad de Cornel New York USA (2014)
Medalla Omecihuatl Inmujeres Instituto de las Mujeres de la Ciudad de México (2013)
Premio L'oreal-UNESCO Awards for Women in Science (2010)
Premio a la mejor Investigación en Biotecnología Agrícola AgroBIO-México (2003)
Incluída en la lista de Expertos en Bioseguridad bajo el Protocolo de Cartagena de Seguridad y la Convención sobre Diversidad Biológica Universidad de Colombia (2003)
Miembro de la Academia Nacional de Ciencias (2002)
Disitnción Universidad Nacional para Jóvenes Académicos en el área de investigación en Ciencias Naturales UNAM (2000)
Miembro del "International cry Gene Nomenclature Committee" (1999 a la fecha)
Premio de la Academia Mexicana de Ciencias en el área de Ciencias Naturales (1998)


M.C. Nathaly Alexandre

Samira López

M.C. Igor Sena

M.C. Luisa Fernanda Velasquez

Biol. Daniela Lizeth Martinez

Biol. Nathalia Dos Santos

Ing. Anayetzi Susano

Francine Yuriko Otsuka

Publicaciones recientes

Pacheco,S. Quiliche,J.P.J. Gomez,I. Sanchez,J. Soberon,M. Bravo,A. 2020. Rearrangement of N-Terminal alpha-Helices of Bacillus thuringiensis Cry1Ab Toxin Essential for Oligomer Assembly and Toxicity Toxins (Basel), 12, E647.

Shu,C. Yan,G. Huang,S. Geng,Y. Soberon,M. Bravo,A. Geng,L. Zhang,J. 2020. Characterization of Two Novel Bacillus thuringiensis Cry8 Toxins Reveal Differential Specificity of Protoxins or Activated Toxins against Chrysomeloidea Coleopteran Superfamily Toxins (Basel), 12, .

Gomez,I. Ocelotl,J. Sanchez,J. Aguilar-Medel,S. Pena-Chora,G. Lina-Garcia,L. Bravo,A. Soberon,M. 2020. Bacillus thuringiensis Cry1Ab domain III beta-22 mutants with enhanced toxicity to Spodoptera frugiperda (J. E. Smith) Applied and Environmental Microbiology, Sep 4 [Epub ahead of print], .

Zhang,J. Jin,M. Yang,Y. Liu,L. Yang,Y. Gomez,I. Bravo,A. Soberon,M. Xiao,Y. Liu,K. 2020. The Cadherin Protein Is Not Involved in Susceptibility to Bacillus thuringiensis Cry1Ab or Cry1Fa Toxins in Spodoptera frugiperda Toxins (Basel), 12, 375.

Onofre,J. Pacheco,S. Torres-Quintero,M.C. Gill,S.S. Soberon,M. Bravo,A. 2020. The Cyt1Aa toxin from Bacillus thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes Journal of Biological Chemistry, 295, 9606-9617.

Zheng,Z. Zhang,Y. Liu,Z. Dong,Z. Xie,C. Bravo,A. Soberon,M. Mahillon,J. Sun,M. Peng,D. 2020. The CRISPR-Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments ISME Journal, 14, 1479-1493.

do Nascimento,N.A. Torres-Quintero,M.C. Lopez-Molina,S. Pacheco,S. Romao,T.P. Pereira-Neves,A. Soberon,M. Bravo,A. Silva-Filha,M.H.N.L. 2020. Functional Bacillus thuringiensis Cyt1Aa is necessary to synergize Lysinibacillus sphaericus Binary toxin against Bin-resistant and refractory mosquito species Applied and Environmental Microbiology, 86, 02770-19.

Gong,L. Kang,S. Zhou,J. Sun,D. Guo,L. Qin,J. Zhu,L. Bai,Y. Ye,F. Akami,M. Wu,Q. Wang,S. Xu,B. Yang,Z. Bravo,A. Soberon,M. Guo,Z. Wen,L. Zhang,Y. 2020. Reduced Expression of a Novel Midgut Trypsin Gene Involved in Protoxin Activation Correlates with Cry1Ac Resistance in a Laboratory-Selected Strain of Plutella xylostella (L.) Toxins (Basel), 12, 76.

Anaya,P. Onofre,J. Torres-Quintero,M.C. Sanchez,J. Gill,S.S. Bravo,A. Soberon,M. 2020. Oligomerization is a key step for Bacillus thuringiensis Cyt1Aa insecticidal activity but not for toxicity against red blood cells Insect Biochemistry and Molecular Biology, 119, 103317.

Wei,W. Pan,S. Ma,Y. Xiao,Y. Yang,Y. He,S. Bravo,A. Soberon,M. Liu,K. 2020. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility Insect Biochemistry and Molecular Biology, 118, 103306.

Shabbir,M.Z. Zhang,T. Prabu,S. Wang,Y.Q. Wang,Z.Y. Bravo,A. Soberon,M. He,K. 2020. Identification of Cry1Ah-binding proteins through pull down and gene expression analysis in Cry1Ah-resistant and susceptible strains of Ostrinia furnacalis Pesticide Biochemistry and Physiology, 163, 200-208.

Guo,Z. Gong,L. Kang,S. Zhou,J. Sun,D. Qin,J. Guo,L. Zhu,L. Bai,Y. Bravo,A. Soberon,M. Zhang,Y. 2020. Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.) Pesticide Biochemistry and Physiology, 163, 23-30.

Garcia-Gomez,B.I. Cano,S.N. Zagal,E.E. Dantan-Gonzalez,E. Bravo,A. Soberon,M. 2019. Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation MBio, 10, e02775-19.

Ma,Y. Zhang,J. Xiao,Y. Yang,Y. Liu,C. Peng,R. Yang,Y. Bravo,A. Soberon,M. Liu,K. 2019. The Cadherin Cry1Ac Binding-Region is Necessary for the Cooperative Effect with ABCC2 Transporter Enhancing Insecticidal Activity of Bacillus thuringiensis Cry1Ac Toxin Toxins (Basel), 11, 538.

Wan,L. Lin,J. Du,H. Bravo,A. Soberon,M. Sun,M. 2019. Bacillus thuringiensis targets the host intestinal epithelial junctions for successful infection of Caenorhabditis elegans Environmental Microbiology, 21, 1086-1098.

Liu,Y. Wang,Y. Shu,C. Lin,K. Song,F. Bravo,A. Soberon,M. Zhang,J. 2018. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests Applied and Environmental Microbiology, 84, e01996-17.

Bravo,A. Lopez-Diaz,J.A. Yamamoto,T. Harding,K. Zhao,J.J. Mendoza,G. Onofre,J. Torres,M.C. Nelson,M.E. Wu,G. Sethi,A. Soberon,M. 2018. Susceptible and mCry3A resistant corn rootworm larvae killed by a non-hemolytic Bacillus thuringiensis Cyt1Aa mutant Scientific Reports, 8, 17805.

Sena de Silva,I. Gomez,I. Sanchez,J. Martinez de Castro,D.L. Valicente,F.H. Soberon,M. Polanczyk,R.A. Bravo,A. 2018. Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin PLoS ONE, 13, e0207789.

Pena-Cardena,A. Grande,R. Sanchez,J. Tabashnik,B.E. Bravo,A. Soberon,M. Gomez,I. 2018. The C-terminal protoxin domain of Bacillus thuringiensis Cry1Ab toxin has a functional role in binding to GPI-anchored receptors in the insect midgut Journal of Biological Chemistry, 293, 20263-20272.

Gomez,I. Ocelotl,J. Sanchez,J. Lima,C. Martins,E. Rosales-Juarez,A. Aguilar-Medel,S. Abad,A. Dong,H. Monnerat,R. Pena,G. Zhang,J. Nelson,M. Wu,G. Bravo,A. Soberon,M. 2018. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa toxicity to Spodoptera frugiperda by domain III mutations indicates two limiting steps in toxicity as defined by receptor binding and protein stability Applied and Environmental Microbiology, 84, e01393-18.

Rocha-Munive,M.G. Soberon,M. Castaneda,S. Niaves,E. Scheinvar,E. Eguiarte,L.E. Mota-Sanchez,D. Rosales-Robles,E. Nava-Camberos,U. Martinez-Carrillo,J.L. Blanco,C.A. Bravo,A. Souza,V. 2018. Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico Frontiers in Bioengineering and Biotechnology, 6, 82.

Gomez,I. Rodriguez-Chamorro,D.E. Flores-Ramirez,G. Grande,R. Zuniga,F. Portugal,F.J. Sanchez,J. Pacheco,S. Bravo,A. Soberon,M. 2018. Spodoptera frugiperda (J. E. Smith) aminopeptidase N1 is functional receptor of Bacillus thuringiensis Cry1Ca toxin Applied and Environmental Microbiology, 84, UNSP e01089-18.

Liu,L. Chen,Z. Yang,Y. Xiao,Y. Liu,C. Ma,Y. Soberon,M. Bravo,A. Yang,Y. Liu,K. 2018. A single amino acid polymorphism in ABCC2 loop 1 is responsible of differential toxicity of Bacillus thuringiensis Cry1Ac toxin in different Spodoptera (Noctuidae) species Insect Biochemistry and Molecular Biology, 100, 59-65.

Pacheco,S. Gomez,I. Sanchez,J. Garcia-Gomez,B.I. Czajkowsky,D.M. Zhang,J. Soberon,M. Bravo,A. 2018. Helix alpha-3 inter-molecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-Cry toxin family Scientific Reports, 8, 10331.

Wang,Z. Fang,L. Zhou,Z. Pacheco,S. Gomez,I. Song,F. Soberon,M. Zhang,J. Bravo,A. 2018. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis) Journal of Biological Chemistry, 293, 11447.

Wang,K. Shu,C. Soberon,M. Bravo,A. Zhang,J. 2018. Systematic characterization of Bacillus Genetic Stock Center Bacillus thuringiensis strains using Multi-Locus Sequence Typing Journal of Invertebrate Pathology, 155, 5-13.

Torres-Quintero,M.C. Gomez,I. Pacheco,S. Sanchez,J. Flores,H. Osuna,J. Mendoza,G. Soberon,M. Bravo,A. 2018. Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity Scientific Reports, 8, 4989.

Shabbir,M.Z. Quan,Y. Wang,Z. Bravo,A. Soberon,M. He,K. 2018. Characterization of the Cry1Ah resistance in Asian corn Borer and its cross-resistance to other Bacillus thuringiensis toxins Scientific Reports, 8, 234.

Soberon,M. Portugal,L. Garcia-Gomez,B.I. Sanchez,J. Onofre,J. Gomez,I. Pacheco,S. Bravo,A. 2018. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis Insect Biochemistry and Molecular Biology, 93, 66-78.

Chen,W.B. Lu,G.Q. Cheng,H.M. Liu,C.X. Xiao,Y.T. Xu,C. Shen,Z.C. Soberon,M. Bravo,A. Wu,K.M. 2017. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm Transgenic Research, 26, 763-774.

Martinez de Castro,D.L. Garcia-Gomez,B.I. Gomez,I. Bravo,A. Soberon,M. 2017. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda Peptides, 98, 99-105.

Pacheco,S. Gomez,I. Sanchez,J. Garcia-Gomez,B.I. Soberon,M. Bravo,A. 2017. Intra-molecular salt bridge in Bacillus thuringiensis Cry4Ba toxin is involved in the stability of helix alpha-3 that is needed for oligomerization and insecticidal activity Applied and Environmental Microbiology, 83, e01515-e01517.

Li,J. Ma,Y. Yuan,W. Xiao,Y. Liu,C. Wang,J. Peng,J. Peng,R. Soberon,M. Bravo,A. Yang,Y. Liu,K. 2017. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes Insect Biochemistry and Molecular Biology, 88, 1-11.

Ocelotl,J. Sanchez,J. Gomez,I. Tabashnik,B.E. Bravo,A. Soberon,M. 2017. ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth Scientific Reports, 7, 2386.

Jiang,J. Huang,Y. Shu,C. Soberon,M. Bravo,A. Liu,C. Song,F. Lai,J. Zhang,J. 2017. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome Applied and Environmental Microbiology, 83, e00541-17.

Onofre,J. Gaytan,M.O. Pena-Cardena,A. Garcia-Gomez,B.I. Pacheco,S. Gomez,I. Bravo,A. Soberon,M. 2017. Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta Peptides, 98, 93-98.

Xiao,Y. Dai,Q. Hu,R. Pacheco,S. Yang,Y. Liang,G. Soberon,M. Bravo,A. Liu,K. Wu,K. 2017. A Single Point Mutation Resulting in Cadherin Mis-localization Underpins Resistance against Bacillus thuringiensis Toxin in Cotton Bollworm Journal of Biological Chemistry, 292, 2933-2943.

Zhou,Z. Liu,Y. Liang,G. Huang,Y. Bravo,A. Soberon,M. Song,F. Zhou,X. Zhang,J. 2017. Insecticidal specificity of Cry1Ah to Helicoverpa armigera is determined by binding APN1 through domain II loops 2 and 3 Applied and Environmental Microbiology, 83, e02864-16.

Portugal,L. Munoz-Garay,C. Martinez-deCastro,D.L. Soberon,M. Bravo,A. 2017. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway Insect Biochemistry and Molecular Biology, 80, 21-31.

Rubio,V.P. Bravo,A. Olmos,J. 2017. Identification of a Bacillus thuringiensis Surface-Layer-Protein with Cytotoxic Activity against MDA-MB-231 Breast Cancer Cells Journal of Microbiology and Biotechnology, 27, 36-42.

Queiroz,P.R. Ramiro,C.A. Martins,E.S. Soberon,M. Bravo,A. Monnerat,R.G. 2016. Mitochondrial markers to distinguish Spodoptera frugiperda populations associated with corn and cotton crops Pesquisa Agropecuaria Brasileira, 51, 692-696.

Wang,Y. Wang,Y. Wang,Z. Bravo,A. Soberon,M. He,K. 2016. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins PLoS ONE, 11, e0161189.

Jin,T. Duan,X. Bravo,A. Soberon,M. Wang,Z. He,K. 2016. Identification of an alkaline phosphatase as a putative Cry1Ac binding protein in Ostrinia furnacalis (Gunée) Pesticide Biochemistry and Physiology, 131, 80-86.

Fang,L. Wang,B. Zhou,Z. Yang,S. Shu,C. Song,F. Bravo,A. Soberon,M. Zhang,J. 2016. Oligomerization of Cry9Aa in solution without receptor binding, is not related with insecticidal activity Electronic Journal of Biotechnology, 21, 54-57.

Zhang,D. Xiao,Y. Hussain,D.K. Soberon,M. Bravo,A. Wu,K. 2016. Molecular Cloning, Expression, and Identification of Bre Genes Involved in Glycosphingolipids Synthesis in Helicoverpa armigera (Lepidoptera: Noctuidae) Journal Of Economic Entomology, 109, 1415-1423.

Zhou,Z. Wang,Z. Liu,Y. Liang,G. Shu,C. Song,F. Zhou,X. Bravo,A. Soberon,M. Zhang,J. 2016. Identification of ABCC2 as a binding protein of Cry1Ac on brush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay Microbiologyopen, 5, 659-669.

Xiao,Y. Liu,K. Zhang,D. Gong,L. He,F. Soberon,M. Bravo,A. Tabashnik,B.E. Wu,K. 2016. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect PLoS Pathogens, 12, e1005450.

Libros y capítulos recientes

Bravo,A. Gill,S.S. Soberon,M. 2019. Bacillus thuringiensis: Mechanisms and use [This article is an update of A. Bravo, M. Soberón, S.S. Gill, 6.6 en: Encyclopedia of Microbiology. Elsevier. pags. 307-332

Bravo de la Parra,M.A. Soberon Chavez,M. 2019. Desarrollos biotecnológicos en algodonero en: Souza Saldivar,V. Algodón GM en Mexico: 20 años de siembra y experiencia. CD MX. UNAM. pags. 43-52

Rocha Munive,M.G. Eguiarte Fruns,L.E. Soberon Chavez,M. Bravo de la Parra,M.A. Souza Saldivar,V. 2019. Algodón GM en Mexico: 20 años de siembra y experiencia. CD MX:. UNAM.

Soberon,M. Monnerat,R. Bravo,A. 2018. Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms en: Mandal,M. Microbial Toxins. Dordrecht. Springer Netherlands. pags. 15-27

Bravo,A. Pacheco,S. Gomez,I. Garcia-Gomez,B. Onofre,J. Soberon,M. 2017. Insecticidal Proteins from Bacillus thuringiensis and Their Mechanism of Action en: Crickmore,N. Bacillus thuringiensis and Lysinibacillus sphaericus: Characterization and use in the field of biocontrol. Cham. Springer International Publishing. pags. 53-66

Soberon,M. Bravo,A. Blanco,C.A. 2016. Strategies to Reduce Insecticide Use in Agricultural Production en: Reference Module in Food Science. Elsevier.

Soberon,M. Monnerat,R. Bravo,A. 2016. Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms en: Mandal,M. Microbial Toxins. Dordrecht. Springer Netherlands. pags. 1-13

Otras Publicaciones

Samaniego-Gaxiola,J.A. Pedroza-Sandoval,A. Bravo,A. Sanchez,J.F. Pena-Chora,G. Mendoza-Flores,D. Chew-Madinaveitia,Y. Gaytan-Mascorro,A. 2019. Fumigación con ácido acético y antimicrobianos para disminuir mortandad de Chrysoperla carneapor infección indeterminada Revista Mexicana de Ciencias Agricolas, 10, 973-986.

Wan,L. Lin,J. Du,H. Bravo,A. Soberon,M. Peng,D. Sun,M. 2018. Bacillus thuringiensis targets the host intestinal epithelial junctions for successful infection of Caenorhabditis elegans bioRxiv, preprint posted June 4, 2018, Now published in Environmental Microbiology doi: 10.1111/1462-2920.14528.

Bravo-de-la-Parra,A. 2015. Viejas y nuevas tendencias en el uso de la fluorescencia para el análisis Biotecnología en Movimiento.Revista de divulgación del Instituto de Biotecnología de la UNAM, 1, 26.

Bravo,A. 2013. Biotecnología agrícola y agroecología, Ciencia, Revista de la Academia Mexicana de Ciencia, 64, 68-77.

Vazquez-Pineda,A. Bravo-de-la-Parra,A. Mendoza de Gives,P. Liebano-Hernandez,E. Hernandez-Linares,I. Yanez-Perez,N. Aguilar-Marcelino,L. Ramirez-Vargas,G. Hernandez-Castro,E. Gutierrez-Segura,I. Lopez-Arellano,E. 2012. Use of Bacillus thuringiensis products as alternative method of control against important veterinary parasitic nematodes : Review Revista Mexicana de Ciencias Pecuarias, 3, 77-88.

Ibarra,J.E. Castro,M.C. Galindo,E. Patino,M. Serrano,L. Garcia,R. Carrillo,J.A. Pereyra-Alferez,B. Alcazar-Pizana,A. Luna-Olvera,H. Galan-Wong,L. Pardo,L. Munoz-Garay,C. Gomez,I. Soberon,M. Bravo,A. 2006. [Microorganisms in the biological control of insects and phytopathogens] Revista Latinoamericana de Microbiologia, 48, 113-120.

de Maagd,R.A. Bravo,A. Crickmore,N. 2005. Bt toxin not guilty by association Nature Biotechnology, 23, 791.

Miranda,R. Gomez,I. Soberon,M. Bravo,A. 2002. Mecanismo de accion de las toxinas Cry de Bacillus Thuringiensis.TIP revista especializada en Ciencias Quimico-Biologicas, 5, 5-13.

Aranda,E. Sanchez,J.F. Lina,L. Peferoen,M. Bravo,A. 1999. Analisis de la union in vitro e in vivo de las d-endotoxinas de Bacillus Thuringiensis al epitelio intestinal de Diatrea grandiosello.Biotecnologia, 3, 95-105.

Bravo,A. Lorence,A. Quintero,R. 1995. Biopesticidas compatibles con el medio ambiente: Bacillus thuringiensis, un modelo unico.Biocontrol, 1, 41-55.


L. Pardo-López, E. B. Tabashnik, M. Soberón-Chavéz y M. A. Bravo-De La Parra 2009 Supresión de resistencia en insectos hacia las toxinas Cry de Bacillus thuringiensis utilizando toxinas que no requieren al receptor caderina.UNAM Europa, China, Canadá, India, Brasil y México (Números de solicitud pendientes). (en trámite)

M. Soberon M y M. A. Bravo 2008 Novel bacterial proteins with pesticidal activity.UNAM China 200680032864.5, Brasil PI0613111-5, India 200800272, Estados Unidos sin número y Europa 06795076.6. (en trámite)

L. Pardo-López, E. B. Tabashnik, M. Soberón-Chavéz y M. A. Bravo-De La Parra 2007 Supresión de resistencia en insectos hacia las toxinas Cry de Bacillus thuringiensis utilizando toxinas que no requieren al receptor caderina.UNAM PCT. (en trámite)

M. Soberon Ch. y M. A. Bravo de la P 2006 Novel bacterial proteins with pesticidal activity.UNAM PCT y Canadá 2625061. (en trámite)

M. Soberon y M. A. Bravo 2005 Novel bacterial proteins with pesticidal activity.UNAM Estados Unidos.

A. Bravo 2000 Confidencial.AVENTIS-UNAM Estados Unidos.

* Indica publicación con otra institución de adscripción

UNAM | UNAM Morelos | Mapa del Sitio | Biblioteca Virtual de Biotecnología | Acerca de | Servicios | e-mail | Publicaciones
Docencia | Seminarios | Nuestra Gente | Biblioteca | Libros y documentos en línea | Localización | Informes Institucionales | Estancias para estudiantes de Licenciatura
SiBioTec | Uso interno. | Página Principal
5038 : 48392