Instituto de Biotecnologia UNAM

IBT-UNAM : Dra. Maria Alejandra Bravo de la Parra


Dra. Maria Alejandra Bravo de la Parra

Líder Académico »» Grupo


Tutor de Maestría y Doctorado

Nivel III del SNI

Departamento de Microbiología Molecular

Líneas de investigación



Oficina +52 (777) 329-1635
desde la CDMX 562-27635

red UNAM 27635
+52 (777) 311-4900 ext 227

Laboratorio +52 (777) 329-1624
desde la CDMX 562-27624

red UNAM 27624
+52 (777) 311-4900 ext 227

- Licenciatura: Investigacion Biomedica Basica, Instituto de Investigaciones Biomedicas-UNAM (1985)
- Maestría: Investigacion Biomedica Basica, CIFN-UNAM (1986)
- Doctorado: Investigacion Biomedica Basica, CIFN-UNAM (1989)
- Mencion honorífica en examen profesional (1985)
- Mencion honorífica en examen de Doctorado
- Medalla "Gabino Barreda", Licenciatura (1985)
- Medalla "Gabino Barreda", Doctorado (1989)
- Estancia de Investigación: Companía Biotecnologica "Plant Genetic Systems", Gante, Belgica (1990-1991)

Reconocimiento Griswold Lecturer Universidad de Cornel New York USA (2014)
Medalla Omecihuatl Inmujeres Instituto de las Mujeres de la Ciudad de México (2013)
Premio L'oreal-UNESCO Awards for Women in Science (2010)
Premio a la mejor Investigación en Biotecnología Agrícola AgroBIO-México (2003)
Incluída en la lista de Expertos en Bioseguridad bajo el Protocolo de Cartagena de Seguridad y la Convención sobre Diversidad Biológica Universidad de Colombia (2003)
Miembro de la Academia Nacional de Ciencias (2002)
Disitnción Universidad Nacional para Jóvenes Académicos en el área de investigación en Ciencias Naturales UNAM (2000)
Miembro del "International cry Gene Nomenclature Committee" (1999 a la fecha)
Premio de la Academia Mexicana de Ciencias en el área de Ciencias Naturales (1998)


Biol. Daniela Lizeth Martinez

M.B Mary Carmen Torres

Biol. Nathalia Dos Santos

M.C. Violeta Matus

Publicaciones recientes

Martinez de Castro,D.L. Garcia-Gomez,B.I. Gomez,I. Bravo,A. Soberon,M. 2017. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda Peptides, Sep 25 [Epub ahead of print], .

Pacheco,S. Gomez,I. Sanchez,J. Garcia-Gomez,B.I. Soberon,M. Bravo,A. 2017. Intra-molecular salt bridge in Bacillus thuringiensis Cry4Ba toxin is involved in the stability of helix alpha-3 that is needed for oligomerization and insecticidal activity Applied and Environmental Microbiology, 83, e01515-e01517.

Li,J. Ma,Y. Yuan,W. Xiao,Y. Liu,C. Wang,J. Peng,J. Peng,R. Soberon,M. Bravo,A. Yang,Y. Liu,K. 2017. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes Insect Biochemistry and Molecular Biology, 88, 1-11.

Ocelotl,J. Sanchez,J. Gomez,I. Tabashnik,B.E. Bravo,A. Soberon,M. 2017. ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth Scientific Reports, 7, 2386.

Jiang,J. Huang,Y. Shu,C. Soberon,M. Bravo,A. Liu,C. Song,F. Lai,J. Zhang,J. 2017. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome Applied and Environmental Microbiology, 83, e00541-17.

Onofre,J. Gaytan,M.O. Pena-Cardena,A. Garcia-Gomez,B.I. Pacheco,S. Gomez,I. Bravo,A. Soberon,M. 2017. Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta Peptides, Jan 17 [Epub ahead of print], .

Xiao,Y. Dai,Q. Hu,R. Pacheco,S. Yang,Y. Liang,G. Soberon,M. Bravo,A. Liu,K. Wu,K. 2017. A Single Point Mutation Resulting in Cadherin Mis-localization Underpins Resistance against Bacillus thuringiensis Toxin in Cotton Bollworm Journal of Biological Chemistry, 292, 2933-2943.

Zhou,Z. Liu,Y. Liang,G. Huang,Y. Bravo,A. Soberon,M. Song,F. Zhou,X. Zhang,J. 2017. Insecticidal specificity of Cry1Ah to Helicoverpa armigera is determined by binding APN1 through domain II loops 2 and 3 Applied and Environmental Microbiology, 83, e02864-16.

Portugal,L. Munoz-Garay,C. Martinez-deCastro,D.L. Soberon,M. Bravo,A. 2017. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway Insect Biochemistry and Molecular Biology, 80, 21-31.

Rubio,V.P. Bravo,A. Olmos,J. 2017. Identification of a Bacillus thuringiensis Surface-Layer-Protein with Cytotoxic Activity against MDA-MB-231 Breast Cancer Cells Journal of Microbiology and Biotechnology, 27, 36-42.

Queiroz,P.R. Ramiro,C.A. Martins,E.S. Soberon,M. Bravo,A. Monnerat,R.G. 2016. Mitochondrial markers to distinguish Spodoptera frugiperda populations associated with corn and cotton crops Pesquisa Agropecuaria Brasileira, 51, 692-696.

Wang,Y. Wang,Y. Wang,Z. Bravo,A. Soberon,M. He,K. 2016. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins PLoS ONE, 11, e0161189.

Jin,T. Duan,X. Bravo,A. Soberon,M. Wang,Z. He,K. 2016. Identification of an alkaline phosphatase as a putative Cry1Ac binding protein in Ostrinia furnacalis (Gunée) Pesticide Biochemistry And Physiology, 131, 80-86.

Fang,L. Wang,B. Zhou,Z. Yang,S. Shu,C. Song,F. Bravo,A. Soberon,M. Zhang,J. 2016. Oligomerization of Cry9Aa in solution without receptor binding, is not related with insecticidal activity Electronic Journal of Biotechnology, 21, 54-57.

Zhang,D. Xiao,Y. Hussain,D.K. Soberon,M. Bravo,A. Wu,K. 2016. Molecular Cloning, Expression, and Identification of Bre Genes Involved in Glycosphingolipids Synthesis in Helicoverpa armigera (Lepidoptera: Noctuidae) Journal Of Economic Entomology, 109, 1415-1423.

Zhou,Z. Wang,Z. Liu,Y. Liang,G. Shu,C. Song,F. Zhou,X. Bravo,A. Soberon,M. Zhang,J. 2016. Identification of ABCC2 as a binding protein of Cry1Ac on brush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay Microbiologyopen, 5, 659-669.

Xiao,Y. Liu,K. Zhang,D. Gong,L. He,F. Soberon,M. Bravo,A. Tabashnik,B.E. Wu,K. 2016. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect PLoS Pathogens, 12, e1005450.

Canton,P.E. Cancino-Rodezno,A. Gill,S.S. Soberon,M. Bravo,A. 2015. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis BMC Genomics, 16, 1042.

Ocelotl,J. Sanchez,J. Arroyo,R. Garcia-Gomez,B.I. Gomez,I. Unnithan,G.C. Tabashnik,B.E. Bravo,A. Soberon,M. 2015. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm PLoS ONE, 10, e0144086.

Pacheco,S. Canton,E. Zuniga-Navarrete,F. Pecorari,F. Bravo,A. Soberon,M. 2015. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes AMB Express, 5, 73.

Tabashnik,B.E. Zhang,M. Fabrick,J.A. Wu,Y. Gao,M. Huang,F. Wei,J. Zhang,J. Yelich,A. Unnithan,G.C. Bravo,A. Soberon,M. Carriere,Y. Li,X. 2015. Dual mode of action of Bt proteins: protoxin efficacy against resistant insects Scientific Reports, 5, 15107.

Shu,C. Tan,S. Yin,J. Soberon,M. Bravo,A. Liu,C. Geng,L. Song,F. Li,K. Zhang,J. 2015. Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis Applied Microbiology and Biotechnology, 99, 7209-7218.

Monnerat,R. Martins,E. Macedo,C. Queiroz,P. Praca,L. Soares,C.M. Moreira,H. Grisi,I. Silva,J. Soberon,M. Bravo,A. 2015. Evidence of Field-Evolved Resistance of Spodoptera frugiperda to Bt Corn Expressing Cry1F in Brazil That Is Still Sensitive to Modified Bt Toxins PLoS ONE, 10, e0119544.

Zuniga-Navarrete,F. Gomez,I. Pena,G. Amaro,I. Ortiz,E. Becerril,B. Ibarra,J.E. Bravo,A. Soberon,M. 2015. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12 Insect Biochemistry and Molecular Biology, 59, 50-57.

Gomez,I. Flores,B. Bravo,A. Soberon,M. 2015. Bacillus thuringiensis Cry1AbMod toxin counters tolerance associated with low cadherin expression but not that associated with low alkaline phosphatase expression in Manduca sexta Peptides, 68, 130-133.

Garcia,K. Ibarra,J.E. Bravo,A. Diaz,J. Gutierrez,D. Torres,P.V. Gomez de Leon P. 2015. Variability of Bacillus thuringiensis Strains by ERIC-PCR and Biofilm Formation Current Microbiology, 70, 10-18.

Chavez,C. Recio-Totoro,B. Flores-Escobar,B. Lanz-Mendoza,H. Sanchez,J. Soberon,M. Bravo,A. 2015. Nitric oxide participates in the toxicity of Bacillus thuringiensis Cry1Ab toxin to kill Manduca sexta larvae Peptides, 68, 134-139.

Monnerat,R. Pereira,E. Teles,B. Martins,E. Praca,L. Queiroz,P. Soberon,M. Bravo,A. Ramos,F. Soares,C.M. 2014. Synergistic activity of Bacillus thuringiensis toxins against Simulium spp. larvae Journal of Invertebrate Pathology, 121, 70-73.

Gomez,I. Sanchez,J. Munoz-Garay,C. Matus,V. Gill,S.S. Soberon,M. Bravo,A. 2014. Bacillus thuringiensis Cry1A toxins are versatile-proteins with multiple modes of action: two distinct pre-pores are involved in toxicity Biochemical Journal, 459, 383-396.

Canton,P.E. Lopez-Diaz,J.A. Gill,S.S. Bravo,A. Soberon,M. 2014. Membrane binding and oligomer membrane insertion are necessary but insufficient for Bacillus thuringiensis Cyt1Aa toxicity Peptides, 53, 286-291.

Portugal,L. Gringorten,J.L. Caputo,G.F. Soberon,M. Munoz-Garay,C. Bravo,A. 2014. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1 Peptides, 53, 292-299.

Tabashnik,B.E. Fabrick,J.A. Unnithan,G.C. Yelich,A.J. Masson,L. Zhang,J. Bravo,A. Soberon,M. 2013. Efficacy of Genetically Modified Bt Toxins Alone and in Combinations Against Pink Bollworm Resistant to Cry1Ac and Cry2Ab PLoS ONE, 8, e80496.

Lopez-Diaz,J.A. Canton,P.E. Gill,S.S. Soberon,M. Bravo,A. 2013. Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae Environmental Microbiology, 15, 3030-3039.

Garcia-Gomez,B.I. Sanchez,J. Martinez de Castro,D.L. Ibarra,J.E. Bravo,A. Soberon,M. 2013. Efficient production of Bacillus thuringiensis Cry1AMod toxins under regulation of cry3Aa promoter and single cysteine mutations in the protoxin region Applied and Environmental Microbiology, 79, 6969-6973.

Flores-Escobar,B. Rodriguez-Magadan,H. Bravo,A. Soberon,M. Gomez,I. 2013. Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis Applied and Environmental Microbiology, 79, 4543-4550.

Bedoya-Perez,L.P. Cancino-Rodezno,A. Flores-Escobar,B. Soberon,M. Bravo,A. 2013. Role of UPR Pathway in Defense Response of Aedes aegypti against Cry11Aa Toxin from Bacillus thuringiensis International Journal of Molecular Sciences, 14, 8467-8478 [Correction vol 17(12) p 2021].

Zuniga-Navarrete,F. Gomez,I. Pena,G. Bravo,A. Soberon,M. 2013. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles Peptides, 41, 81-86.

Soberon,M. Lopez-Diaz,J.A. Bravo,A. 2013. Cyt toxins produced by Bacillus thuringiensis: A protein fold conserved in several pathogenic microorganisms Peptides, 41, 87-93.

Pardo-Lopez,L. Soberon,M. Bravo,A. 2013. Bacillus thuringiensis insecticidal 3-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection FEMS Microbiology Reviews, 37, 3-22.

Bravo,A. Gomez,I. Porta,H. Garcia-Gomez,B.I. Rodriguez-Almazan,C. Pardo,L. Soberon,M. 2013. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity Microbial Biotechnology, 6, 17-26.

Libros y capítulos recientes

Bravo,A. Pacheco,S. Gomez,I. Garcia-Gomez,B. Onofre,J. Soberon,M. 2017. Insecticidal Proteins from Bacillus thuringiensis and Their Mechanism of Action en: Crickmore,N. Bacillus thuringiensis and Lysinibacillus sphaericus: Characterization and use in the field of biocontrol. Cham. Springer International Publishing. pags. 53-66

Soberon,M. Bravo,A. Blanco,C.A. 2016. Strategies to Reduce Insecticide Use in Agricultural Production en: Reference Module in Food Science. Elsevier.

Soberon,M. Monnerat,R. Bravo,A. 2016. Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms en: Mandal,M. Microbial Toxins. Dordrecht. Springer Netherlands. pags. 1-13

Bravo,A. Soberon,M. Gao,Y. 2015. Preface en: Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus thuringiensis Toxins. Oxford. CABI. pags. xi-xii

Bravo,A. Gomez,I. Mendoza,G. Gaytan,M. Soberon,M. 2015. Different models of the mode of action of Bt 3d-Cry toxins en: Bravo,A. Bt resistance – characterization and strategies for GM crops expressing Bacillus thuringiensis toxins. Oxford. CABI. pags. 56-68

Soberon,M. Garcia-Gomez,B.I. Pacheco,S. Sanchez-Quintana J Tabashnik,B.E. Bravo,A. 2015. Countering pest resistance with genetically modified Bt toxins en: Bravo,A. Bt resistance-characterization and strategies for GM crops expressing Bacillus thuringiensis. Oxford. CABI. pags. 150-161

Bravo,A. Martinez-de-Castro,D.L. Sanchez-Quintana J Canton,P.E. Mendoza,G. Gomez,I. Pacheco,S. Garcia-Gomez,B.I. Onofre,J. Ocelotl,J. Soberon,M. 2015. Mechanism of action of Bacillus thuringiensis insecticidal toxins and their use in the control of insect pests en: Alouf,J.E. Comprehensive Sourcebook of Bacterial Protein Toxins 4a ed. Elsevier. pags. 858-873

Soberon,M. Gao,Y.L. Bravo,A. 2015. Bt resistance- characterization and strategies for GM crops expressing Bacillus thuringiensis toxins Oxford:. CABI. 213 p.

Soberon,M. Gomez,I. Garcia-Gomez,B.I. Carmona,D. Ocelotl,J. Villanueva,F. Flores,B. Bravo,A. 2014. Mode of action of mosquitocidal toxins from Bacillus thuringiensis and their use in control of insect vectors of human diseases en: Biotechnology: beyond borders. CSIR National Chemical Laboratory. pags. 279-288

Bravo,A. Martinez-de-Castro,D.L. Sanchez,J. Munoz-Garay,C. Matus,V. Canton,P.E. Lopez-Diaz,J. Portugal,L. Mendoza,G. Soberon,M. 2014. Mode of action of Bacillus thuringiensis toxins and their use in transgenic crops to control insect pests en: Biotechnology: beyond borders. CSIR National Chemical Laboratory. pags. 122-134


Bravo-de-la-Parra,A. 2015. Viejas y nuevas tendencias en el uso de la fluorescencia para el análisis Biotecnología en Movimiento.Revista de divulgación del Instituto de Biotecnología de la UNAM, 1, 26.

Bravo,A. 2013. Biotecnología agrícola y agroecología, Ciencia, Revista de la Academia Mexicana de Ciencia, 64, 68-77.

Vazquez-Pineda,A. Bravo-de-la-Parra,A. Mendoza de Gives,P. Liebano-Hernandez,E. Hernandez-Linares,I. Yanez-Perez,N. Aguilar-Marcelino,L. Ramirez-Vargas,G. Hernandez-Castro,E. Gutierrez-Segura,I. Lopez-Arellano,E. 2012. Use of Bacillus thuringiensis products as alternative method of control against important veterinary parasitic nematodes : Review Revista Mexicana de Ciencias Pecuarias, 3, 77-88.

Ibarra,J.E. Castro,M.C. Galindo,E. Patino,M. Serrano,L. Garcia,R. Carrillo,J.A. Pereyra-Alferez,B. Alcazar-Pizana,A. Luna-Olvera,H. Galan-Wong,L. Pardo,L. Munoz-Garay,C. Gomez,I. Soberon,M. Bravo,A. 2006. [Microorganisms in the biological control of insects and phytopathogens] Revista Latinoamericana de Microbiologia, 48, 113-120.

de Maagd,R.A. Bravo,A. Crickmore,N. 2005. Bt toxin not guilty by association Nature Biotechnology, 23, 791.

Miranda,R. Gomez,I. Soberon,M. Bravo,A. 2002. Mecanismo de accion de las toxinas Cry de Bacillus Thuringiensis.TIP revista especializada en Ciencias Quimico-Biologicas, 5, 5-13.

Aranda,E. Sanchez,J.F. Lina,L. Peferoen,M. Bravo,A. 1999. Analisis de la union in vitro e in vivo de las d-endotoxinas de Bacillus Thuringiensis al epitelio intestinal de Diatrea grandiosello.Biotecnologia, 3, 95-105.

Bravo,A. Lorence,A. Quintero,R. 1995. Biopesticidas compatibles con el medio ambiente: Bacillus thuringiensis, un modelo unico.Biocontrol, 1, 41-55.


L. Pardo-López, E. B. Tabashnik, M. Soberón-Chavéz y M. A. Bravo-De La Parra 2009 Supresión de resistencia en insectos hacia las toxinas Cry de Bacillus thuringiensis utilizando toxinas que no requieren al receptor caderina.UNAM Europa, China, Canadá, India, Brasil y México (Números de solicitud pendientes). (en trámite)

M. Soberon M y M. A. Bravo 2008 Novel bacterial proteins with pesticidal activity.UNAM China 200680032864.5, Brasil PI0613111-5, India 200800272, Estados Unidos sin número y Europa 06795076.6. (en trámite)

L. Pardo-López, E. B. Tabashnik, M. Soberón-Chavéz y M. A. Bravo-De La Parra 2007 Supresión de resistencia en insectos hacia las toxinas Cry de Bacillus thuringiensis utilizando toxinas que no requieren al receptor caderina.UNAM PCT. (en trámite)

M. Soberon Ch. y M. A. Bravo de la P 2006 Novel bacterial proteins with pesticidal activity.UNAM PCT y Canadá 2625061. (en trámite)

M. Soberon y M. A. Bravo 2005 Novel bacterial proteins with pesticidal activity.UNAM Estados Unidos.

A. Bravo 2000 Confidencial.AVENTIS-UNAM Estados Unidos.

* Indica publicación con otra institución de adscripción

UNAM | UNAM Morelos | Mapa del Sitio | Biblioteca Virtual de Biotecnología | Acerca de | Servicios | e-mail | Publicaciones
Docencia | Seminarios | Nuestra Gente | Biblioteca | Libros y documentos en línea | Localización | Informes Institucionales | Estancias para estudiantes de Licenciatura
Uso interno. | Página Principal
28 : 2966